<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=ISO-8859-1">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    <br>
    <div class="moz-forward-container"><br>
      <br>
      -------- Original Message --------
      <table class="moz-email-headers-table" border="0" cellpadding="0"
        cellspacing="0">
        <tbody>
          <tr>
            <th valign="BASELINE" align="RIGHT" nowrap="nowrap">Subject:
            </th>
            <td>Open positions at TUDelft - PhD and PostDoc - Visual
              Analysis in Population Imaging Research (VAnPIRe)</td>
          </tr>
          <tr>
            <th valign="BASELINE" align="RIGHT" nowrap="nowrap">Date: </th>
            <td>Wed, 25 Sep 2013 09:53:56 +0200</td>
          </tr>
          <tr>
            <th valign="BASELINE" align="RIGHT" nowrap="nowrap">From: </th>
            <td>Rafael Bidarra <a class="moz-txt-link-rfc2396E" href="mailto:R.Bidarra@TUDELFT.NL"><R.Bidarra@TUDELFT.NL></a></td>
          </tr>
          <tr>
            <th valign="BASELINE" align="RIGHT" nowrap="nowrap">Reply-To:
            </th>
            <td><a class="moz-txt-link-abbreviated" href="mailto:R.Bidarra@tudelft.nl">R.Bidarra@tudelft.nl</a></td>
          </tr>
          <tr>
            <th valign="BASELINE" align="RIGHT" nowrap="nowrap">Organization:
            </th>
            <td>Delft University of Technology</td>
          </tr>
          <tr>
            <th valign="BASELINE" align="RIGHT" nowrap="nowrap">To: </th>
            <td><a class="moz-txt-link-abbreviated" href="mailto:IEEEVRLIST@LISTSERV.UNCC.EDU">IEEEVRLIST@LISTSERV.UNCC.EDU</a></td>
          </tr>
        </tbody>
      </table>
      <br>
      <br>
      <meta http-equiv="content-type" content="text/html;
        charset=ISO-8859-1">
      <o:p></o:p>
      <div class="moz-forward-container">
        <div class="WordSection1">
          <p class="MsoNormal"><o:p> </o:p></p>
          <p class="MsoNormal"><b>PhD and PostDoc - Visual Analysis in
              Population Imaging Research (VAnPIRe) <o:p></o:p></b></p>
          <p class="MsoNormal"><o:p> </o:p></p>
          <p class="MsoNormal">The PhD/PostDoc position will be part of
            the Population Imaging Genetics project (<a
              moz-do-not-send="true"
href="http://www.tudelft.nl/en/current/nieuwsartikelen/stw-perspectief-topsectoren/stw-imagene/">http://www.tudelft.nl/en/current/nieuwsartikelen/stw-perspectief-topsectoren/stw-imagene/</a>)
            that involves linking observations on the human genome to
            observations in imaging data. Novel, genome-wide sequencing
            approaches combined with large-scale population imaging
            studies open up unprecedented possibilities for discovering
            the cause of a disease and relating it to its anatomical and
            functional consequences. <br>
            The exact nature of the features (markers) that have the
            highest correlation with the clinical outcomes under study
            is by definition hard to predict. Due to the magnitude and
            heterogeneity of the data, as well as the nonspecific nature
            of the features that are being sought, this is a complex and
            laborious process.<br>
            We envision a new class of visual analysis techniques that
            enable the structured and interactive visual exploration of
            population imaging data. With these techniques, patterns and
            high-potential hypotheses can be flexibly derived from
            population imaging data, aiding both the derivation of
            insight and the search for predictive data features.<br>
            The main aim of this project is to develop and evaluate a
            new, interactive visual analysis approach that enables the
            extraction of patterns and high-potential hypotheses from
            the irregular and complex population imaging research data.<br>
            New insights into the mechanisms behind the clinical outcome
            of a population can be extracted by augmenting the human
            visual system with interactive visualization and coupled
            feature extraction techniques.<o:p></o:p></p>
          <p class="MsoNormal"><o:p> </o:p></p>
          <p class="MsoNormal">Apply through the official pages:<o:p></o:p></p>
          <p class="MsoNormal">PhD: <a moz-do-not-send="true"
href="http://recruitment2.tudelft.nl/vacatures/index.php?lang=en&id=528599&type=w">http://recruitment2.tudelft.nl/vacatures/index.php?lang=en&id=528599&type=w</a>
            <o:p> </o:p></p>
          <p class="MsoNormal"><span lang="NL">PostDoc: <a
                moz-do-not-send="true"
href="http://recruitment2.tudelft.nl/vacatures/index.php?lang=en&id=528598&type=w">http://recruitment2.tudelft.nl/vacatures/index.php?lang=en&id=528598&type=w</a>
              <o:p> </o:p></span></p>
          <p class="MsoNormal"><span lang="NL"><o:p> </o:p></span><br>
          </p>
        </div>
      </div>
      <br>
    </div>
    <br>
  </body>
</html>